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Abstract   

 

We study the mistakes that happen in the real-time identification of structural breaks in the selected aggregate-

level of the U.S. financial data series. We are interested in the real time identification because of its relevance for 

forecasting. The level of noisiness of different data sets and techniques used for the identification of breaks affect 

the frequency of mistakes encountered in real time. We find that mistakes in not finding the true breaks and/or 

finding the wrong ones in real time are made more frequently in the case of a noisier financial data set. Moreover, 

the techniques for optimal break detection based on sequential learning of the Bai and Perron (2003) are found to 

make fewer mistakes than those based on Information Criteria (IC). 
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1. INTRODUCTION  

 

Many economic and financial time series are subject to structural breaks or changes as a result of changes in tastes, 

technology or policy. The presence of breaks in time series, as widely recognized, if ignored, may lead to serious 

implications. It is a crucial matter that needs to be dealt with special care and attention, or otherwise one may 

obtain spurious results as argued by Perron (1989). Moreover, breaks can pose a serious problem for forecasting. 

Pástor and Stambaugh (2012) also argue that “estimation risk” is one of the key components of long-horizon 

forecasting uncertainty.  

 

Pástor and Stambaugh (2012) also argue that “estimation risk” is one of the key components of long-horizon 

forecasting uncertainty. There is a large literature on the developments of techniques for identifying breaks in a 

given data set (e.g. Alogoskoufis and Smith (1991); Stock and Watson (1996); Pesaran and Timmermann (2002); 

Stock and Watson (2003); Rapach and Wohar (2006); Breitung and Eickmeier (2011)). A recent literature has 

concurrently focused on developing approaches to forecasting under the presence of breaks. Rossi et al. (2012) 

review the empirical analyses that have been carried out on the advances in forecasting under the presence of 

breaks. A key question is what data set to employ to estimate the parameters of the forecasting model. Since 

forecasts are typically based on the assumption of the constancy of the model parameters, the potential for breaks 

implies that a key forecasting problem is to determine the data set to employ to estimate the parameters of the 

model that will generate future observations. This requires judging if and when there has been a break in the past 

data. If there is judged to be a recent break then there is a further question of whether the model should be solely 

estimated on post break data or whether there is any incremental information in pre-break data. 

 

In this paper, we consider another aspect of this problem of forecasting in an environment where there are 

uncertain break dates. We study the problem of learning about break dates and examine the dynamics of how 

agents learn about the occurrence of breaks in real time. Intuitively, the problem for an agent in real time is judging 
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whether an extreme observation is just an outlier from an unchanged structural model, or whether it is the first 

observation from a model with revised parameters. We investigate how often different techniques mistakenly 

identify breaks in real time, when we know with the hindsight of the full data set that no break occurred. 

 

The liquidity crisis that arose in 2008 offers an example of this problem. It is so severe that at times confidence is 

eroded that this is just another shock drawn from the same distribution as shocks over the last 50 years. Many 

commentators argue that the future might resemble a 1930s style depression or to the low growth environment 

observed in Japan since the early 1990s. This would be an example of a potential structural break in the economy. 

Confidence has gradually returned that this is not a structural break but rather a very extreme observation in a 

given model. However at the time of writing there are still different views on this point. As more data accumulate, 

the apparent break turns out merely to have been a few extreme observations in an unchanged model. The nearly 

halving of stock prices in 2008 can only reflect the opinion of many investors that a structural break had occurred 

in 2008. The recovery of stock markets from that low point can be interpreted in the context of the ideas of this 

study as the result of a gradual revival of confidence that a permanent break had not occurred. 

 

We obtain the aggregate-level financial data series i.e. dividends, earnings and prices from Shiller (2013). 

Following Timmermann (2001), we model the growth processes in dividends and the same for earnings and prices 

as well. The key results from our study of the real-time dynamics of breaks are summarised below: 

 The breaks found with the benefit of hindsight are found linked to some major or significant events in 

the economic and financial history. This provides us with a good ground into assuming that these breaks 

are the true breaks in our study. 

 In real time, it is more likely for mistakes to be made in the case of a noisier dataset, or dataset with 

higher volatility.  

 For the four techniques for optimal break detection of the Bai and Perron (2003), Bayesian Information 

Criterion (BIC) reports the highest number of total false breaks found compared to the other techniques 

for optimal break selection; Sequential, Repartition and the modified version of Schwarz’ criterion 

proposed by Liu et al. (1997) and abbreviated as LWZ. 

 

2. DATA AND METHODOLOGY 

2.1  Aggregate-level Data  

 

The monthly data on dividend, earnings and price series, denoted by Dt, Et and Pt for the time period that begins 

from January 1881 until December 2013 are obtained from the continuously updated-data following Shiller 

(2013).  The computation of ‘Online Data Robert Shiller’ on monthly dividend and earnings is from the S&P four-

quarter totals for the quarter since 1926, with linear interpolation to monthly figures. The data on dividend and 

earnings before 1926 are compiled from Cowles (1939), with linear interpolation from the annual figures. 

Moreover, the monthly data on stock prices are computed from averaging the daily closing prices and the data on 

CPI (Consumer Price Index-All Urban Consumers) starting from 1913 are obtained from the Index (2011). For 

the years before 1913, the data on CPI are extracted from the CPI Warren and Pearson’s price index (Warren and 

Pearson (1935)). 

 

We convert the series of dividend, earnings and price into real dividends, earnings and price by using the 

Consumer Price Index (CPI) are obtained from the same source as well. The left-hand side or dependent variable 

in our structural break analysis in real time is the growth rate of real dividends, prices and earning. Thus, we model 

the change in logarithm of real dividend, earnings and price as the following: 

 

1. dt = ∆ log (Dt) 

2. et = ∆ log (Et) 

3. pt = ∆ log (Pt) 

 

Furthermore, we also consider the absolute value of the growth rate i.e. |dt|, |et| and |pt| in the above aggregate-

level financial series which allows us to detect possible breaks in the volatility of the processes related to the 

above aggregate-level financial series. 

 

2.2  Structural Break Analysis  

 

We utilise the Bai and Perron (2003) program that allows for the construction of estimates of the parameters in 

models with multiple structural breaks. The algorithm of this program is based on the principle of dynamic 

programming and information criteria and sequential hypothesis testing give the optimal number of breaks. 

Besides that, it is also designed to construct confidence intervals and test for structural change. We can also 
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estimate either pure or partial structural change models and choose the options whether to allow for heterogeneity 

and/or serial correlation in the data and the errors across segments or not.  

 

The multiple linear regression models with m breaks (m+1 regimes) are described as the following:   

𝑦𝑡 = 𝑥𝑡
′𝛽 +  𝑧𝑡

′ 𝛿1 + 𝑢𝑡 ,       𝑡 = 1, … , 𝑇1 
𝑦𝑡 = 𝑥𝑡

′𝛽 +  𝑧𝑡
′ 𝛿2 + 𝑢𝑡 ,          𝑡 = 𝑇1 + 1, … , 𝑇2 

⋮  

𝑦𝑡 = 𝑥𝑡
′𝛽 +  𝑧𝑡

′ 𝛿𝑚+1 + 𝑢𝑡 ,   𝑡 = 𝑇𝑚+1 + 1, … , 𝑇                         

(1)                                

 

where yt is the observed dependent or response variable at time t; xt(p x 1) is the vector of variable(s), fixed 

throughout the analysis; zt(q x 1) is the vector of variable(s) subject to structural breaks at time t, β and δj(j = 

1,...,m+1) are the vectors of coefficients of xt and zt respectively; ut is the error or disturbance at time t. The 

maximum number of breakpoints is given by m. 

For the purpose of our structural break analysis, we consider two different (general) structural break models as 

the following: 

 

• Trend-stationary break model (Model 1): 

 

𝑦𝑡  =  𝑓(𝑡) +  𝑢𝑡  (2) 

where t is time, f is a deterministic (linear) function, in which f(t)=  and ut is the disturbance at time t. The 

variable(s) subject to breaks is given by zt={f(t)} whereas xt={}. It is a trend stationary break model when f(t)= . 

 

• Autoregressive break model (Model 2):  

 

𝑦𝑡  =  𝛼 +  𝑦𝑡−1 + 𝑢𝑡 (3) 

where t is time, α is drift, yt-1 is the lag of dependent variable or unit root term and ut is the disturbance at time t. 

The variable(s) subject to breaks is given by zt={α, yt-1} whereas xt={}. 

 

2.3  Real-time Analysis 

 

In general, following Clements and Galvão (2013), we have access to the “vintage” T values of the observations 

on y up to time period T-1, where “vintage” is defined as the information set that one has available in hand at a 

given or specific date and the compilation of such vintage is the “real-time data set”(Croushore and Stark 2003). 

The T-vintage which can be written as {ytT}t=1,2,…T-1. This is also called the latest available T-vintage whereas 

the previous vintages, for example, the T-j vintage is {ytT-j} for j=1,2,3,…, and where t=1,2,…,T-j-1. When we 

have the full data set with hindsight, I have the T-vintage in which the true breaks are detected as in the previous 

chapter. The regression model for T-vintage with m breaks (m+1 regimes) of interest is 

 

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 + 𝑧𝑡
′𝑇𝛿1 + 𝑒𝑡

𝑇 ,      𝑡 = 1, … , 𝑇1  

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 + 𝑧𝑡
′𝑇𝛿2 + 𝑒𝑡

𝑇 ,      𝑡 = 𝑇1 + 1, … , 𝑇2  

⋮   

𝑦𝑡
𝑇 = 𝑥𝑡

,𝑇𝛽 + 𝑧𝑡
′𝑇𝛿𝑚+1 + 𝑒𝑡

𝑇 ,      𝑡 = 𝑇𝑚+1 + 1, … , 𝑇-1 (4) 

The true set of breaks is given by {Tk} where k=1,2,…,m where m is the maximum number of break allowed in 

the empirical exercise.  

 

For the real time analysis, we carry out the structural breaks analysis of the Bai and Perron (2003) program by 

using all the previous vintages that I have, i.e. {ytT-j}for j=1,2,3,…, and where t=1,2,…,T-j-1.  

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿1 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 1, … , 𝑇1  

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿2 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 𝑇1 + 1, … , 𝑇2  

⋮   

𝑦𝑡
𝑇−𝑗

= 𝑥𝑡
,𝑇−𝑗

𝛽 +  𝑧𝑡
′𝑇−𝑗

𝛿𝑚+1 + 𝑒𝑡
𝑇−𝑗

,      𝑡 = 𝑇𝑚+1 + 1, … , 𝑇-j-1 (5) 
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With the benefit of hindsight that a break had occurred at   at 5% significance level, we would expect to find the 

same break at  as more data arrive. For instance, we would expect to detect a break at a past date,  at  +1 by using  

+1-vintage, i.e. {ytT}t=1,2,…T-1. Similarly, we would always expect to detect the same break in the next periods 

as more data become available. 

 

However, there are times that this happens not to be the case. The error in judgement in real time may present in 

the form of Type 1 and Type 2 error: 

 

1. Type 1 error: This happens in the case of a rejection of the null hypothesis of no break when it is actually true 

i.e. a break was identified when there was no break. 

2. Type 2 error: This happens in the case of a failure to reject the null hypothesis when it is actually not true i.e. 

a break was not identified when there was a break. 

 

In the context of our structural break analysis in real time, if we were to explain judgement error in the form of 

Type 1 and Type 2 error as how it would naturally have been thought of, this would lead us to some confusion 

which can further lead to misleading analysis.  

 

For the mistakes in detection of structural breaks in real time, the following would have been our set of hypotheses: 

 

• Null hypothesis: There is no (true) break(s) at data point t 

• Alternative hypothesis: There is a (true) break(s) at data point t 

 

Essentially, we investigate the following: 

 

• How often do we find or not find the wrong or true break(s) given different level of noisiness of the data 

set in real time respectively? 

 

3. RESULTS 

3.1 Structural Breaks in Aggregate-level Series in Hindsight 

 

Bai and Perron (2003) method involves an extensive programming that allows the construction of the estimates 

of parameters in models with multiple structural changes (the main essence being a dynamic programming 

algorithm).  By setting m=8, the maximum number of breaks allowed is 8 and by treating the number of breaks 

as known, Global Optimization procedure estimates the break dates for m=1, 2, 3, 4, 5, 6, 7, 8. The optimal 

number of breaks is estimated by using Information Criteria (BIC and LWZ), Sequential and Repartition test.  

 

Timmermann (2001) tests the breaks in the endowment process by using the Gauss program provided by Bai 

and Perron (1998). The maximum number of breakpoints is set to 8 as well and by allowing the 

heteroscedasticity in the residuals; he presents the evidence of structural breaks in the U.S. dividend series. He 

utilises the monthly data of on dividends from 1871-1999 obtained from Shiller (2000). Dividends are 

converted into the real dividends by, Dt. The dependent or left-hand side variable is the change in the logarithm 

of Dt, i.e. the real dividend growth rate, dt = ∆ log (Dt). 

 

Timmermann (2001) presents the results for the following processes: 

 

1. Dividend growth 

2. Absolute dividend growth  

3. Dividend growth with lag 

4. Absolute dividend growth with lag 

 

The same processes are included in our investigation together with some other processes of the aggregate-

level time series of earnings and price as well. We demonstrate the results by applying different specifications 

in two different models. The first model is based on the univariate specifications with a drift or an intercept 

term as the regressor subject to structural breaks whereas the second model includes drift or the intercept term 

and a single lag of the dependent variable as the regressors subject to structural breaks. 

 

Table 1 presents the estimated number of optimal breakpoints by the techniques for optimal break selection 

for all the processes for the two models. The estimated number of breakpoints by using the Bai and Perron 

(2003)method, which is the modified version of the Bai and Perron (1998) method applied by Timmermann 

(2001) for the above four processes are consistent with Timmermann (2001). Sequential and Repartition 
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breakpoint tests use a significance level of 5%, while the two information criteria, BIC and LWZ are based on 

the penalized likelihood function. Sequential and Repartition fail to detect any break for most of the processes 

when there is only an intercept term included as the regressor but by including a single lag as another regressor, 

the estimated number of breakpoints reported by Sequential and Repartition is higher compared to BIC. LWZ 

is observed to be more stringent and the estimated number of breaks is always lower than BIC.  

 

Table 1: The Estimated Number of Breakpoints, Bai and Perron (2003) Method 

 Process Sequential Repartition BIC LWZ 

Model 1: Stationary Break Model 

Abs. dividend growth* 2 2 5 1 

Abs. earnings growth 0 0 5 1 

Abs. price growth 3 3 2 2 

Dividend growth* 0 0 4 0 

Earnings growth 0 0 0 0 

Price growth 0 0 0 0 

Model 2: Autoregressive Break Model 

Abs. dividend growth with lag* 6 6 4 1 

Abs. earnings growth with lag 0 0 2 1 

Abs. price growth with lag 3 3 2 2 

Dividend growth with lag* 3 3 1 1 

Earnings growth with lag 5 5 1 1 

Price growth with lag 0 0 0 0 

 

3.2 Mistakes in Real Time 

 

Table 2 presents the descriptive statistics of the number of dates where we do not find an earlier true break in real 

time. We observe that for the absolute growth processes, the noisier a dataset is, the more dates we do not find a 

break at a date where there is indeed a true break. In terms of the comparison between the techniques for break 

detection, it is interesting to see that for the processes related to growth in dividend, BIC finds the highest number 

of dates that we do not find the true breaks followed by LWZ, and Sequential and Repartition for the processes 

related to growth in dividend. However, for the processes related to growth in price, this is not the case. Overall, 

the autoregressive model (Model 2) reports mostly higher number of dates at which the true breaks are not found 

compared to the stationary break model (Model 1). 

 

Mistakes can also happen when we find a break at a past date where there is no true break at that date in real 

time. Table 3, on the other hand, presents the descriptive statistics of the number of dates where we do not find 

a break at a past date where there is no true break at that date in real time i.e. we correctly do not find the 

wrong breaks. BIC reports the highest number of total false breaks found compared to the other techniques for 

optimal break selection. Comparing the two break models, the autoregressive model (Model 2) reports lower 

number of dates at which the false breaks are not found especially noted for Sequential and Repartition 

techniques but the evidence is not conclusive for BIC and LWZ.  

 

4. CONCLUSION 

 

It is important to look at breaks from the real time perspective as this captures what could actually have been 

attained with the data that we have available at the present time. As more data become available, the view also 

changes accordingly. As said earlier, we could relate this to the recent financial crisis that arose in 2008. This 

would be a potential structural break in the economy. However, the techniques for optimal break selection 

considered in this paper do not find a break during this crisis. We offer an explanation to this situation from 

our point of view of the real-time learning about the dynamics of breaks. The availability of more data in the 

subsequent periods may reveal that some apparent breaks turn out merely to have been few extreme 

observations in an unchanged model.  

 

In this paper, the breaks found in hindsight are assumed to be the true breaks for the purpose of real-time analysis. 

We observe links between these breaks and some major or significant events in the history. We find that in real 

time, it is more likely for mistakes to happen in the case of a noisier dataset. Bayesian Information Criterion (BIC) 

is observed to record the highest number of total wrong breaks found compared to the other techniques for optimal 

break selection; Sequential, Repartition and the modified version of Schwarz’ criterion proposed by Liu et al. 

(1997) abbreviated as LWZ. 
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Table 2: Mistakes in the Identification of Breaks in Real Time, Bai and Perron (2003) Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure Process Descriptive Statistics 

    Model 1: Stationary Break Model 

    N Mean  Median Std. Dev.  Min Max Range 

Sequential Absolute dividend growth 2 80 80 N/A N/A N/A N/A 

  Absolute price growth 3 304 307 263.51 39 566 527 

Repartition Absolute dividend growth 2 80 80 N/A N/A N/A N/A 

  Absolute price growth 3 523.33 692 353.58 117 761 644 

BIC Absolute dividend growth  5 233.25 132 277.59 27 642 615 

 Absolute earnings growth 5 330.75 336.50 199.34 109 541 432 

  Absolute price growth 2 371.50 371.50 297.69 161 582 421 

  Dividend growth 4 613.25 628.50 92.96 492 704 212 

LWZ Absolute dividend growth  1 198 198 N/A N/A N/A N/A 

  Absolute price growth 2 428.50 428.50 350.02 181 676 495 

  Model 2: Autoregressive Break Model 

Sequential Absolute dividend growth  6 472.40 540 361.51 42 980 938 

  Absolute price growth  3 764.67 1005 424.09 275 1014 739 

  Dividend growth  3 591.67 267 590.92 167 1540 1373 

  Earnings growth  5 763.60 636 335.26 511 1144 633 

Repartition Absolute dividend growth  6 417.40 248 369.16 42 980 938 

  Absolute price growth  3 499 691 397.45 42 764 722 

  Dividend growth  3 247.67 286 189.43 42 415 373 

  Earnings growth  5 474 212 533.65 3 1215 1212 

BIC Absolute dividend growth  4 361.50 361.50 54.45 323 400 77 

 Absolute earnings growth  2 812 812 216.37 659 965 306 

  Absolute price growth  2 985 1135 518.53 251 1418 1167 

  Dividend growth  1 671 671 N/A N/A N/A N/A 

 Earnings growth  1 1139 1139 N/A N/A N/A N/A 

LWZ Absolute dividend growth  1 497 497 N/A N/A N/A N/A 

  Absolute price growth  2 399.50 399.50 54.45 361 438 77 

  Dividend growth  1 905 905 N/A N/A N/A N/A 

  Earnings growth  1 1139 1139 N/A N/A N/A N/A 
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Table 3: Correct Identification of Breaks in Real Time, Bai and Perron (2003) Program 

 

Procedure Process Descriptive Statistics 

    Model 1: Stationary Break Model 

    N Mean Median Std. Dev.  Min Max Range 

Sequential Absolute dividend growth 29 1333.69 1372 390.45 162 1705 1543 

  Absolute price growth 36 1076.53 1017.50 486.44 263 1713 1450 

Repartition Absolute dividend growth 28 1426.29 1628 321.38 795 1708 913 

  Absolute price growth 90 1058.07 1014 451.57 263 1713 1450 

BIC Absolute dividend growth  98 1201.80 1030.50 323.48 528 1709 1181 

 Absolute earnings growth 179 1111.71 1052 424.87 123 1713 1590 

  Absolute price growth 70 909.13 1088 528.26 86 1710 1624 

  Dividend growth 112 1180.46 1110 299.36 739 1712 973 

LWZ Absolute dividend growth  20 1316.45 1636 424.24 779 1712 933 

  Absolute price growth 34 1168.76 1016.50 350.24 760 1708 948 

  Model 2: Autoregressive Break Model 

Sequential Absolute dividend growth  29 1223.48 1219 493.41 201 1712 1511 

  Absolute price growth  17 1001.12 945 571.18 42 1694 1652 

  Dividend growth  28 1171.89 1155 422.80 42 1694 1652 

  Earnings growth  72 36.80 17 128.84 1 754 753 

Repartition Absolute dividend growth  23 1143.65 1148 497.61 201 1711 1510 

  Absolute price growth  27 1028.30 941 399.72 260 1694 1434 

  Dividend growth  28 1227.18 1155 297.83 511 1694 1183 

  Earnings growth  92 47.43 20 132.44 1 861 860 

BIC Absolute dividend growth  7 1528.57 1659 212.95 1035 1694 659 

 Absolute earnings growth  16 1300.44 1216 323.99 829 1637 808 

  Absolute price growth  23 1293.13 1193.50 171.10 1122 1646 524 

  Dividend growth  0 N/A N/A N/A N/A N/A N/A 

 Earnings growth  4 1594.25 1640.5 102.13 1442 1654 212 

LWZ Absolute dividend growth  2 1366 1366 384.6661 1094 1638 544 

  Absolute price growth  1 1323 1323 N/A N/A N/A N/A 

  Dividend growth  0 N/A N/A N/A N/A N/A N/A 

 Earnings growth  4 1594.25 1640.50 102.13 1442 1654 212 


